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volatility model is flexible enough that this is not a restrictive assumption. Next, we specify

the following generic process for assets and variance:

dAt

At
= µA(t)dt+ �A,tdBA(t)

d�2
A,t = µv(t, �A,t)dt+ �v(t, �A,t)dBv(t) (2)

where dBA(t) is a standard Brownian motion. �A,t captures potential time-varying asset

volatility, which we will model formally in Section 2.4.6 The process we specify for asset

volatility is general enough to capture popular stochastic volatility models, such as Hes-

ton (1993) or the Ornstein-Uhlenbeck process employed by, for example, Stein and Stein

(1991). We allow an arbitrary instantaneous correlation of ⇢t between the shock to asset

returns, dBA(t), and the shock to asset volatility, dBv(t). The specification in Equation

(2) encompasses a wide range of stochastic volatility models popular in the option pricing

literature.7

The instantaneous return on equity is computed via simple application of Itō’s Lemma:
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(3)

where �t = @f/@At is the “delta” in option pricing, ⌫t = @f/@�A,t is the “vega” of the

option, and hXit denotes the quadratic variation process for an arbitrary stochastic process

Xt. Here we have ignored the sensitivity of the option value to the maturity of the debt.8 In
6Implicit is that the volatility process satisfies the usual restrictions necessary to apply Itō’s Lemma.
7A short and certainly incomplete list includes Black and Scholes (1973), Heston (1993), and Bates

(1996).
8For simplicity, we also ignore sensitivity to the risk-free rate, which is trivially satisfied if we assume a
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our applications, ⌧ will be large enough that this assumption is innocuous. All the quadratic

variation terms are of the order O(dt) and we collapse them to an unspecified function

q(At, �A,t; f), where the notation captures the dependence of the higher order Itō terms on

the partial derivatives of the call option pricing function.

In reality, we do not observe At because it is the market value of assets. However, given

that the call option pricing function is monotonically increasing in its first argument, it is

safe to assume that f(·) is invertible with respect to this argument. We further assume that

the call pricing function is homogenous of degree one in its first two arguments, which is

a standard assumption in the option pricing literature. We define the inverse call option

formula as follows:

At

Dt
= g (Et/Dt, 1, �A,t, ⌧, rt)

⌘ f�1
(Et/Dt, 1, �A,t, ⌧, rt) (4)

Equation (3) reduces returns to the following:9
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For reasons that will become clear shortly, we call LM
⇣

Et/Dt, 1, �
f
A,t, ⌧, rt

⌘

the “leverage

constant term structure.
9Using the fact that f(·) is homogenous of degree 1 in its first argument also implies that

�t = @f (At, Dt,�A,t, ⌧, r) /@At = @f (At/Dt, 1,�A,t, ⌧, r) /@(At/Dt)

So with an inverse option pricing formula, g(·) in hand we can define the delta in terms of leverage Et/Dt.
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multiplier.” When it is obvious, we will drop the functional dependence of the leverage

multiplier on leverage, etc., and instead denote it simply by LMt. In order to obtain a

complete law of motion for equity, we need to know the dynamics of volatility, �A,t, as

opposed to variance. Itō’s Lemma implies that the volatility process behaves as follows:

d�A,t =

⌘s
(

�A,t;µv ,�v)
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= s (�A,t;µv, �v) dt+
�v(t, vt)

2�A,t
dBv(t) (6)

Plugging Equations (2) and (6) into Equation (5) yields the desired full equation of motion

for equity returns:

dEt

Et
= [LMtµA(t) + s (�A,t;µv, �v) + q(At, �A,t; f)] dt

+LMt�A,tdBA(t) +
⌫t
Et

�v(t, �A,t)

2�A,t
dBv(t) (7)

Because our empirical focus will be on daily equity and asset returns, we ignore the drift term

for equity. Typical daily equity returns are virtually zero on average, so for our purposes

ignoring the equity drift is harmless.10 Instantaneous equity returns then naturally derive

from Equation (7) with no drift:

dEt

Et
= LMt�A,tdBA(t) +

⌫t
Et

�v(t, �A,t)

2�A,t
dBv(t) (8)

Suppose for a moment that we can ignore the contribution of asset volatility shocks, dBv(t),

to equity returns.
10Indeed, ignoring the drift when thinking about long-horizon asset returns (and levels) is not trivial.
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Assumption 1. For the purposes of daily equity return dynamics, we can ignore the follow-

ing term in Equation (8):

⌫t
Et

�v(t, �A,t)

2�A,t
dBv(t)

In Appendix A, we show that Assumption 1 is appropriate in a variety of option pricing

models.11 The intuition behind this result is as follows: mean reversion is embedded in any

reasonable model of volatility. In this case, the time it takes volatility to mean revert is

much shorter than typical debt maturities for firms. Thus, the cumulative asset volatility

over the life of the option (equity) is effectively constant. In turn, the ⌫t term is nearly zero,

and so shocks to asset volatility get washed out as far as equity returns are concerned. In the

Black-Scholes-Merton (BSM) case, this assumption holds exactly because asset volatility is

constant. Under Assumption 1, equity returns and instantaneous equity volatility are given

by:

dEt

Et
= LMt�A,tdBA(t)

volt

✓

dEt

Et

◆

= LMt ⇥ �A,t (9)

Equation (9) is our key relationship of interest. The equation states that equity volatility

(returns) is a scaled function of asset volatility (returns), where the function depends on

financial leverage, Dt/Et, as well as asset volatility over the life of the option (and the

interest rate). The moniker of the “leverage multiplier” should be clear now: LMt describes

how equity volatility is amplified by financial leverage. It is illustrative to first explore the

shape of the leverage multiplier; a natural benchmark to do so is within the Black-Scholes-
11That is, when the underlying asset process has jumps, stochastic volatility, stochastic volatility and

jumps, etc.
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Merton model.

2.2 The Shape of the Leverage Multiplier

2.2.1 Leverage Multiplier in the Black-Scholes-Merton World

It is straightforward to compute LM(·) when BSM is the relevant option pricing model. To

start, we fix annualized asset volatility to �A = 0.15, time to maturity of the debt ⌧ = 5, and

the risk-free rate r = 0.03. Figure 1 plots the leverage multiplier against financial leverage

(Dt/Et) in this case:

Figure 1: BSM Leverage Multiplier
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Notes: This figure plots the leverage multiplier in the BSM model. Annualized asset volatility is set to
�A = 0.15, the time to maturity of the debt is ⌧ = 5, and the annualized risk-free rate is r = 0.03.

From Figure 1, we can see that the leverage multiplier is increasing in leverage. Intuitively,

when a firm is more leveraged, its equity option value is further from the money and asset

returns exceed equity returns by a larger degree. When leverage is zero (Dt/Et = 0), the

leverage multiplier is one, because assets must be equal to equity. Next, we investigate how
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by BSM as a starting point for constructing a flexible specification for LM(·).

2.2.2 The Leverage Multiplier in Other Option Pricing Settings

The purpose of this subsection is to get a sense of the shape of the leverage multiplier in

more complicated option pricing settings. Figure 3 summarizes visually:

Figure 3: The Leverage Multiplier in Other Option Pricing Models
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Notes: This figure plots the leverage multiplier in a variety of option pricing models. Full details of the
construction can be found in Appendix A. The upper left panel is the benchmark BSM Model. The upper
right panel is the Merton (1976) jump-diffusion model. The lower left panel is the Heston (1993) stochastic
volatility model. Finally, the lower right panel is a stochastic volatility with jumps model that is used by
Bates (1996) and Bakshi et al. (1997).

The full details of how we constructed the leverage multiplier in each of the specific

option pricing models are found in Appendix A. In addition to the benchmark BSM case,

Figure 3 plots the leverage multiplier in the Merton (1976) jump-diffusion model, the Heston
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task to define a function that retains the flexibility of ours but also maintains the necessary

properties of the leverage multiplier. Our analysis in Section 2.2.1 also demonstrated that

LM is decreasing in asset volatility and time-to-maturity.14 Because our leverage multiplier

is a power function of the BSM multiplier, an additional advantage of our specification is

that it inherits these natural properties from the Black-Scholes-Merton model.

2.4 The Full Recursive Model

The preceding analysis motivates the use of our leverage multiplier in describing the relation-

ship between equity volatility and leverage. To make the model fully operational in discrete

time, we propose the following process for equity returns:
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(11)

We will call the specification described in Equation (11) as a “Structural GARCH” model.15

The parameter set for the Structural GARCH is ⇥ := (!,↵, �, �,�), so there is only one extra

amounts of leverage. When we estimate the model, we later verify that none of the fitted � result in violations
of this sort.

14Our analysis in Section 2.2.1 applied to the BSM model, but the notion that the leverage multiplier is
decreasing in both asset volatility and time to maturity holds more broadly. Merton (1974) shows that as the
time-to-maturity goes to infinity, the option becomes the same as the underlying, so the leverage multiplier
must decrease to its lower bound of one (Theorem 3). Similarly, the call option pricing formula is weakly
increasing in volatility (Theorem 8). So long as the rate of increase in the delta of the option w.r.t volatility
is slower than for the underlying option price, the leverage multiplier will be decreasing in asset volatility.

15In reality our model is a Structural GARCH(1,1) model, because it includes a single lag of the squared
asset return and asset volatility. Incorporating a richer lag structure is straightforward, so that our model
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reduce future risk.28

Choosing k In order to compute precautionary capital, we must also select a value of

k that we’d like to ensure the firm meets in the event of a crisis. We choose a capital

requirement of k = 2 percent, which roughly translates to a leverage ratio of 50. The reason

for this particular capital requirement is simple: a leverage ratio of 50 seems to correspond to

when a financial firm ceases its normal function (e.g. Lehman Brothers). Broadly speaking,

the real effects of bank failures seem to take effect when financial firms stop providing their

basic services; thus, k = 2 percent can be thought of as a bankruptcy condition. Obviously,

many different target capital ratios are also defensible.

6.3.1 Example: Bank of America

To make our idea more clear, we compute precautionary capital for Bank of America. For

this particular exercise, we assume we are standing on October 1, 2008. In other words, we

use initial values of D0 and eE0 as if we are at this point in time. Early October 2008 is of

natural interest because it was just before the peak of the financial crises.

In Figure 12, we compute precautionary capital for different confidence levels. The x-axis

in the plot is precautionary capital, or the size of a potential capital injection. The y-axis

describes how likely the firm is to meet a k = 2 percent capital requirement, for each level

of precautionary capital. The curve in blue depicts our calculation of precautionary capital

using a standard asymmetric GARCH model. The curve in green is the same computation,

but uses the Structural GARCH model.

Figure 12 is useful because it allows a regulator to first choose a level of confidence for
28Mathematically, this means that in the Structural GARCH, the function f(·) depends on leverage. In

the GARCH family of volatility models, f(·) does not depend on leverage.
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Bank of America to meet its capital requirement. The regulator can then say how much

capital Bank of America would have needed on October 1, 2008 to be sure it meets this

capital requirement if a crisis should occur in the next six months. For instance, according

to a standard asymmetric GARCH model, in order to be 90 percent sure that Bank of

America would meet a 2 percent capital requirement, we would have needed to inject nearly

$600 billion of equity in October 2008. This number is large because normal GARCH models

ignore the volatility-leverage connection. According to the Structural GARCH model, we

would have needed to add about $220 billion to be 90 percent certain that Bank of America

would meet its capital requirement.

With Structural GARCH, the leverage reduction of holding more capital results in lower

volatility, lower beta and lower probability of failure, a very sensible outcome, but one which

is not present in ordinary volatility models. In lieu of the advantages from reducing leverage,

we believe these results imply that financial firms should be subject to a risk-based capital

adequacy ratio for total leverage. Precautionary capital through the Structural GARCH lens

provides a method to compute this type of capital adequacy ratio in a quantitatively precise

manner.

7 Conclusion

This paper has provided a econometric approach to disentangle the effects of leverage on

equity volatility. The Structural GARCH model we propose is rooted in the classical Merton

(1974) structural model of credit, but departs from it in a flexible yet parsimonious way.

In doing so, we are able to deliver high frequency asset return and asset volatility series.

Our particular econometric parameterization is only one way in which to use the contingent
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A Appendix: The Leverage Multiplier and Assumption
1 Under Different Option Pricing Models

In this appendix, we do three things. First, we add jumps to the asset process. Second, we explore
whether stochatic volatility and/or jumps change the conclusions drawn in the main text regarding
using Equation (9) as a model of equity returns. Finally, we confirm that jumps and stochastic
volatility do not change the general shape of the leverage multiplier, and so our specification remains
flexible enough to be accurate in these settings. Through this exposition, the steps to construct
Figure 3 will also become clear. In order to accomplish these tasks, it will be useful to essentially
start from scratch, and assign a generalized process for assets. As such, the reader may find many
parts repetitive from the main text, but we take this approach for the sake of completeness.

A.1 Motivating the Model
Adding jumps means we re-define the equity value as follows:

Et = f (At, Dt,�A,t, JA, NA, ⌧, rt) (19)

where f(·) is an unspecified call option function, At is the current market value of assets, Dt is the
current book value of outstanding debt, �A,t is the (potentially stochastic) volatility of the assets.
⌧ is the life of the debt, and finally, rt is the annualized risk-free rate at time t. Additionally, JA
and NA are processes that describe discontinuous jumps in the underlying assets. Next, we specify
the following generic process for assets and variance:

dAt

At
= [µA(t)� �µJ ]dt+ �A,tdBA(t) + JAdNA(t)

d�

2
A,t = µv(t,�A,t)dt+ �v(t,�A,t)dBv(t) (20)

where dBA(t) is a standard Brownian motion. �A,t captures time-varying asset volatility. We also
capture potential jumps in asset values via Ja and NA(t). log (1 + JA) ⇠ N

�

log [1 + µJ ]� �

2
J/2,�

2
J

�

and Nt is a Poisson counting process with intensity �. The relative price jump size JA determines
the percentage change in the asset price caused by jumps, and the average asset jump size is µJ . We
assume the jump size, JA, is independent of NA(t), BA(t), and Bv(t). Similarly, the asset Poisson
counting process NA(t) is assumed to be independent of BA(t) and Bv(t). We allow an arbitrary
instantaneous correlation of ⇢t between the shock to asset returns, dBA(t), and the shock to asset
volatility, dBv(t).

The instantaneous return on equity is computed via simple application of Itō’s Lemma for
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Poisson processes:
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where �t = @f (At, Dt,�A,t, ⌧, r) /@At is the “delta” in option pricing, ⌫t = @f (At, Dt,�A,t, ⌧, r) /@�A,t

is the so-called “vega” of the option, and hXit denotes the quadratic variation process for an arbi-
trary stochastic process Xt. Additionally, EJ

t is the value of equity for an asset jump of JA = J .
Hence, EJ

t is itself a random variable. Once again, we have ignored the sensitivity of the option
value to the maturity of the debt. All the quadratic variation terms are of the order O(dt) and
henceforth we collapse them to an unspecified function q(At,�A,t; f), where the notation captures
the dependence of the higher order Itō terms on the partial derivatives of the call option pricing
function.

The call option pricing function is still monotonically increasing in its first argument, so it is
safe to assume that f(·) is invertible with respect to this argument. We further assume that the
call pricing function is homogenous of degree one in its first two arguments. Define the inverse call
option formula as follows:

At

Dt
= g (Et/Dt, 1,�A,t, JA, NA, ⌧, rt)

⌘ f

�1
(Et/Dt, 1,�A,t, JA, NA, ⌧, rt) (22)

Thus, Equation (21) reduces returns to the following:29
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Henceforth, when it is obvious, we will drop the functional dependence of the leverage multiplier on
leverage, etc. and instead denote it simply by LMt. In order to obtain a complete law of motion

29Using the fact that f(·) is homogenous of degree 1 in its first argument also implies that

�t = @f (At, Dt,�A,t, ⌧, r) /@At = @f (At/Dt, 1,�A,t, ⌧, r) /@(At/Dt)

So with an inverse option pricing formula, g(·) in hand we can define the delta in terms of leverage Et/Dt.
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for equity, we use Itō’s Lemma to derive the volatility process:
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Plugging Equations (20), (24) into Equation (23) yields the desired full equation of motion for equity
returns:
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Since typical daily equity returns are virtually zero on average, we can continue to ignore the equity
drift term. Instantaneous equity returns then naturally derive from Equation (25) with no drift:

dEt

Et
= LMt�A,tdBA(t) +

⌫t

Et

�v(t,�A,t)

2�A,t
dBv(t) +



E

J
t � Et

Et

�

dNA(t) (26)

Our ultimate object of interest is the instantaneous volatility of equity, but in order to obtain
a complete expression for equity volatility we have to determine the variance of the jump com-
ponent of equity returns. In Appendix B, we derive an easily computed expression, denoted by
VJ
A (JA, NA(t);At), that involves a simple integration over the normal density. Hence, total instan-

taneous equity volatility in this (reasonably) general setting is given by:
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(27)
There are four terms that contribute to equity volatility. The first term relates to asset volatility

and the second relates to the volatility of asset volatility (as well as the sensitivity of the option
to changes in volatility). The third depends on the correlation between assets innovations and
asset volatility innovations. In practice, this correlation is negative. Thus, the middle two terms in
Equation (27) will have offsetting effects in terms of the contribution of stochastic asset volatility to
equity volatility. Finally, the fourth term relates to the volatility of the jump process for assets. In
later sections and also in the Appendix C, we show that we can ignore all but the first term for the
purposes of volatility modeling in our context because, compared to asset volatility, they contribute
very little to equity volatility. Thus, Equation (26) and (27) reduce to a very simple expression for
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equity returns and instantaneous volatility, and is the basis for Assumption 1:

dEt

Et
⇡ LMt�A,tdBA(t)
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⇡ LMt ⇥ �A,t (28)

Equation (28) is our key relationship of interest. It states that equity volatility (returns) is a
scaled function of asset volatility (returns), where the function depends on financial leverage, Dt/Et,
as well as asset volatility over the life of the option (and the interest rate). The moniker of the
“leverage multiplier” should be clear now. The functional form for LM(·) depends on a particular
option pricing model, and one of our key contributions is to estimate a generalized LM(·) function
that, in practice, encompasses a number of option pricing models. In order to build further intuition
for the properties of the leverage multiplier, we examine it in three different option pricing models:
Merton (1976), Heston (1993), and Bates (1996).

A.2 The Leverage Multiplier Under Various Option Pricing Models
The purpose of this subsection is twofold. We first aim to show that the approximation in Equation
(28) performs well in a variety of different option pricing models. The main mechanism behind this
approximation is as follows: as the time to maturity of the equity option gets larger, the contribution
of the volatility of volatility (and jumps, if small enough in probability) to equity returns/volatility
is minimal. This is primarily because volatility is mean reverting, and thus “long run” volatility is
effectively constant, so that short run changes in volatility matter little for equity returns. In all of
the option pricing models we consider, we assess the accuracy of this approximation in the same way.
We simply parameterize the model and compute the total volatility of equity, given by Equation
(27), within the model. Then, we compare it with the approximation of (28) within the same model.
This comparison is conducted at debt maturities ranging from one month to twenty years. For each
maturity, we choose the debt level such that the leverage is the same across maturities. For example,
suppose we are examining Option Model A. For each maturity, we search for the debt (strike) such
that debt to equity will be some arbitrary level L. For this debt level, we next compute the total
equity volatility and the approximation under Option Model A; then we repeat this process for
each maturity. We opt to keep leverage consistent across maturities since our empirical work will
focus on financial firms whose leverage tends to be high, despite heterogenous debt maturities. The
leverage level we target is L = 15. Why this number for leverage? For the empirical portion of
our investigation, we examine financial firms. Financial firms typically have high levels of leverage
ranging from 10-20, where leverage is measured as the book value of debt divided by the market
value of equity. When possible, we are also careful to keep parameters consistent across all option
pricing models we consider in order to keep the results comparable.

After we establish the validity of the approximation in Equation (28), we explore how the
leverage multiplier behaves in a variety of option pricing settings. As we will show, Equation (28)
is indeed a useful approximation, and the leverage multiplier takes on a similar shape across many
different models.
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Figure 15: Leverage Multiplier in Heston (1993) Model
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Notes: We plot the leverage multiplier in the Heston (1993) stochastic volatility model against leverage.
The time to maturity is set to five years and the remaining model parameters are given in Table 6. For this
analysis, the risk-free rate is set to r = 0.03.

The shape of the leverage multiplier under stochastic volatility is quite similar to the BSM
case. The most obvious difference is the concavity of the stochastic volatility leverage multiplier.
When moving from low levels of leverage (e.g. 2-3) to intermediate levels of leverage (e.g. 5-7)
the leverage multiplier rises rapidly as compared to the BSM baseline. In addition, the level of
the stochastic volatility leverage multiplier is higher than the BSM counterpart. Because of the
negative correlation between asset returns and asset volatility, the future asset return distribution
has negative skewness. In turn, leverage has strong effects on equity returns and volatility since the
option value of equity is less likely to expire in the money. This intuition is also consistent with
the results of section 2.2.3, where we use Monte Carlo simulation to explore models with stochastic
volatility and non-normal shocks.

A.2.2 Analysis of the Leverage Multiplier under Merton’s (1976) Jump-Diffusion
Model

Another strand of option pricing models in the literature began with the seminal work of Merton
(1976), henceforth MJD. In this formulation, the stock returns follow a standard geometric Brownian
motion, appended with a continuous time Poisson jump process. Again, this case is encompassed by
the specification in Equation (26), but we turn off the stochastic volatility channel (i.e. �A,t = �A)
and allow only for jumps. In this setting, equity return dynamics from (26) reduce to the following
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jump-diffusion:
dEt
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= LMt�AdBA(t) +
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Similarly, the volatility of equity returns reduces to the following:
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where again the expression for VJ
A (JA, NA(t);At) is found in Appendix B. The key insight of MJD

model was that, even though dynamic riskless hedging is impossible with discontinuous sample
paths, if individual stock jumps are independent of the prevailing pricing kernel then their presence
is an “unpriced” risk and typical hedging arguments can still be applied. Merton (1976) solves for
the closed form option pricing solution, which turns out to be a weighted average of BSM prices,
with the weights determined by the likelihood of a given number of jumps over the life of the debt.35

Our analysis of his solution begins with an assessment of the approximation in Equation (28).

Validating Assumption 1 In order to do so, we first parameterize the MJD model as follow:

Table 7: Merton (1976) Calibration for Risk-Neutral Asset Prices
Parameter Value

� 0.01
µJ -0.1
�J 0.2

Notes: This table provides the parameters we use to calibrate the asset return process under the Merton
(1976) model.

In this case, the average jump size (µJ) means that when a jump occurs, the asset value falls
by 10%, and has a dispersion (�J) of 20%. Jumps happen at an annualized frequency of �, which
means there are roughly two expected days per year with jumps for assets returns. In addition, it
is well known that the total instantaneous volatility of assets is given by:
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Thus, in order to keep the analysis comparable to the baseline BSM case, we set �A,t = �A such
that the total annualized asset volatility is 15%. Using only the leverage multiplier to compute
equity volatility (i.e. ignoring volatility added by jumps) is visualized in the following plot:

35To use the exact Merton (1976) formula in our context, set the mean of the “Merton Jump”, which is
log-normal to µM = log(1 + µJ)� �

2
J/2 in the specification we outline for jumps. The variance is the same.
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Figure 16: Accuracy of Volatility Approximation in Merton (1976) Model
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As is evident from Figure 16, adding jumps to the asset return process has a very small effect
on overall equity volatility. The variance of the entire jump process, JAdNA(t), is largely dictated
by the variance of the Poisson counting process, which is �. Therefore, for reasonable jump arrival
intensities, the variance contribution of jumps to equity volatility will be small in magnitude.36

Now that we have established that approximating equity volatility by Equation (28), we turn our
attention to understanding the properties of the leverage multiplier in this context.

The Leverage Multiplier in the Merton (1976) Model We study the properties of the
Merton (1976) leverage multiplier by varying the jump intensity �. Again, in order to make these
results comparable to the benchmark BSM analysis, we always set �A such that the annualized
total volatility of assets is 15%. In addition, we vary the time to maturity of the debt. The leverage
multiplier for these different cases is as follows:

36In the Online Appendix, we repeat this analysis for other parameterizations and find the conclusions to
be robust.
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Figure 17: Leverage Multiplier in Merton (1976) Jump-Diffusion Model
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Note: This figure plots the leverage multiplier in the MJD model. Annualized jump intensity takes on one of
two values � 2 {0.01, 0.15}. The time to maturity of the debt also takes on two possible values ⌧ 2 {5, 10}.
The annualized risk-free rate is r = 0.03.

The economic underpinnings of the leverage multiplier in the MJD case are, unsurprisingly,
quite similar to the BSM case. Holding time to maturity constant, when we decrease the likelihood
of a jump, the leverage multiplier also decreases. Since jumps are assumed to decrease the asset
value, then a lower likelihood of a jump means the equity is more likely to finish in the money and
the effect of leverage on equity volatility is dampened. Holding the likelihood of a jump constant,
when we increase the time to maturity, the leverage multiplier increases. In this case, the diffusion
portion of assets dominates the negative jump component (due to the parameter values we chose).
Adding maturity to the debt therefore means the equity is more likely to expire with value and so
leverage means less for equity volatility. It is likely that for large jump intensities (or large jump
sizes) this effect would reverse, but this type of parameterization seems empirically implausible.

A.2.3 Analysis of the Leverage Multiplier with Stochastic Volatility and Jumps

By now it should be clear that the leverage multiplier takes roughly the same form across different
option pricing models; however, for completeness, we conduct one last exploration of the leverage
multiplier shape when assets have both stochastic volatility and are subject to jumps (henceforth
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SVJ). The risk-neutral asset return dynamics are thus described as follows:

dAt

At
= [r � �µJ ]dt+ �A,tdBA(t) + JdNA(t)

d�

2
A,t = 

⇥

✓ � �

2
A,t

⇤

dt+ ⌘�A,tdBv(t)

where the jump process for assets retains its original properties as in Equation (20). The closed
form solution for option prices under these dynamics is also well-known at this point (e.g. Bakshi,
et al. (1997)). We calibrate the model by combining previous parameterizations and repeat them
here:

Table 8: Parameters for Stochastic Volatility with Jumps Model
Parameter Value

 4
⌘ 0.15

�A,t 0.15
⇢ -0.5
� 0.01
µJ -0.1
�J 0.2

Notes: This table provides the parameters we use to calibrate the risk-neutral asset return process under
the SVJ model used by, among others, Bates (1996) and Bakshi et al. (1997).

The long run average for volatility, ✓, set such that the total long run average asset volatility
is 15%. As usual, we begin by checking whether the approximation in Equation (28) holds in this
setting.

Validating Assumption 1 Figure 18 plots the total equity volatility in the SVJ model against
the approximate equity volatility given by (28) for differing maturities and constant leverage:
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Figure 18: Equity Volatility Analysis in SVJ Model
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Notes: The blue line in this figure plots the total (true) volatility of equity if assets follow the SVJ model
(e.g. Bakshi et al. (1997)). The red line in this figure plots the volatility of equity if it is approximated
according to Equation (28). For each time to maturity, we set At = 1 and choose the level of debt such that
financial leverage is approximately 15. For this analysis, the risk-free rate is set to 0.03.

At this point, it should not be so surprising that our approximation holds reasonably well.
Simply put, for reasonable jump arrival intensities and quickly mean-reverting volatility processes,
the main component of equity volatility is asset volatility itself (amplified by the leverage multiplier).

The Leverage Multiplier in the SVJ Model Similarly, Figure 19 plots the leverage mul-
tiplier in the SVJ model:
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Figure 19: Leverage Multiplier in SVJ Model
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Notes: We plot the leverage multiplier in the SVJ model against leverage. The time to maturity is set to
five years and the remaining model parameters are given in Table 8. For this analysis, the risk-free rate is
set to r = 0.03.

As expected, the leverage multiplier in the SVJ cases is the highest for high levels of leverage.
The intuition from the BSM model still applies: high leverage means the equity is very likely to
expire out of the money for a couple of reasons. First, because volatility and asset return shocks are
negatively correlated, the distribution of future asset returns has negative skewness, thus making
high levels of leverage even more paralyzing in terms of equity finishing with value. The second
reason is due to jumps, which we assume to be negative on average. Together, both factors contribute
to a higher equity volatility amplification mechanism when leverage becomes too high. Still, the
general shape of the leverage multiplier seems consistent across all of the option pricing models, and
we therefore confirm that the results from the main text remain valid.
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B Appendix: Total Volatility of Equity in Stochastic Volatil-
ity with Jump Environment

We need to compute the variance of the following term:
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where we use the independence of NA(t) and JA. To make the dependence of equity value on the
asset jump more explicit, we replace E

J
t with the call option pricing function, but we suppress all

but the first argument for notional convenience:
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Here, the second line uses the independence of NA(t) and JA, and the third line uses the standard
variance definition for a Poission process.37

 (·) and �(·) are given by:
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where hY (y) is the pdf of a normal random variable with mean log [1 + µJ ]��2J/2 and variance �2J .
In practice, VJ

A (JA, NA(t);At) is easily computed numerically.

37i.e.
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C Appendix: Empirical Argument for Ignoring Volatility
Terms

For exposition, we repeat Equation (3):
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It is straightforward to work out that equity variance will be as follows:
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pricing lingo, �t is the “delta” of the call option on assets, and ⌫t is the “vega” of the call option
on assets.38 In the model where we set the long run volatility of assets to be the unconditional
volatility of the asset GJR process, this analysis is moot as d�

f
A,t = 0. Our task now is to show

that the last two terms are negligible for the purposes of modeling equity volatility, when we use
the GJR forecast for long run asset volatility.

C.1 Magnitude of Volatility Terms
In the language of the Structural GARCH model we can simply substitute LMt into Equation (31)
where it is appropriate:
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(32)

In order to investigate the magnitude of the terms we ignore (i.e. any term containing ⌫t), we need
a functional form for the sensitivity of the equity value to changes in long run asset volatility. Since
we are only interested in magnitudes, we will use the Black-Scholes vega. It is unlikely that the
Black-Scholes vega is incorrect by an order of magnitude, so for this exercise it will be sufficient.
The next thing we need in order to quantitatively evaluate Equation (32) are time-series for LMt,
dAt/At, and d�

f
A,t. To be precise, if we extended the model to include changes in volatility we would

undoubtedly obtain different estimates for these three quantities. Again, since our goal is to assess
38To be precise, these are the delta and vega of the option where debt has been normalized to 1.
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Figure 12: Precautionary Capital: Bank of America on 10/1/2008
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Notes: The figure above plots, for Bank of America, the likelihood of meeting a capital requirement against
precautionary capital . The simulation date is on October 1, 2008. The debt level of the firm is $1.6701
trillion. The true value of equity for the firm on this date is $173.87 billion. The simulation horizon is six
months. Each set of simulations is conditioned on a drop of 40 percent in the aggregate stock market, and
the same set of market and firm shocks is used for each simulation set — the only difference is starting
leverage.
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